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DEVELOPMENT OF FREE CONVECTION FLOW OF A GAS
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Abstract—The system is a vertical tube open at both ends and heated at the wall. An ambient gas (Pr = 0-7)
enters the bottom of the tube with uniform velocity and temperature and flows up through the tube due to
natural convection. The flow is assumed to be both stable and laminar. The incompressible thermal
boundary layer equations for this situation were solved by a finite difference method for conditions of
constant wall temperature and constant wall heat flux.

From the velocity and temperature profiles obtained for various stages of the flow development, a
graphical correlation was found between dimensionless tube length and two dimensionless quantities
representative of the volumetric flow rate and the rate of heat dissipation. For the case of constant wall
temperature these results were compared with those of Elenbaas [3], and excellent agreement was obtained.
The results for constant wall heat flux were compared with those of Kays [8] on laminar forced convection.
His calculations, in which the transverse velocity component was assumed negligible, gave Nusselt numbers

near the entrance that are 20-30 per cent higher than the present results.

NOMENCLATURE Cp real part of ¢;
A, parameter in equation (25) equal to Co heat capacity of fluid;
2/F; c, Vie 11
4 Ve 1 + 1 ’ 2AR  (AR)? 2R,AR’
o 2AR?> (AR)* 2RAR’ c Vi 1 1 )
~ V. 1 1 ¥ 2AR  Pr(AR® 2PrRAR’
®  T3AR _ PHARZ T 2PrRAR’ D, tube diameter;
. 2 ; .
b, constant in equation (26); D (gfv" + PYAZ;
B ;k -
B, Ui + 2 ; Dy, XJZ‘*TJ;,M‘
AZ  (AR)? e, constant in equation (26);
5 U, 2 e, imaginary part of e;
- AZ + Pr(ARY’ e, real part Qf e;
. £ volumetric flow rate;
ber(x), real part of Io(x Ji) =real part of Ff dimensionless volumetric flow rate;
’ Jolx \/i); g body force in momentum equation
bei(x), imaginary part of I4(x./i)= (gravity);
 —imaginary part of Jo(x \/1); Gr*,  modified Grashof number defined by
bea (x), d ber (x)/dx; equations (8) and (19);
bei’ (x), d bei (x)/dx; ] Iy(x), modified Bessel function of the first
) constant in equation (26); kind of order zero;
¢ imaginary part of ¢; Jo(x), Bessel function of the first kind of

* Leonard P. Davis is now with Tennessee Eastman order zero; .
Company, Kingsport, Tennessee. k, thermal conductivity of fluid;
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modified Bessel function of the second
kind of order zero;

tube length;

dimensionless tube length = 1/Gr*;
constant in equation (26);

counting variable;

Nusselt number ;

pressure;

hydrostatic pressure of fluid at
ambient conditions;

pressure defect as defined by equation
(4);

dimensionless pressure defect;
Prandtl number;

heat dissipation rate;

heat flux at the wall;

dimensionless heat dissipation rate;
dimensionless heat dissipation rate
evaluated at tube exit;

radial coordinate ;

radius of tube;

dimensionless radial coordinate;
dimensionless radial finite difference
grid coordinate;

constant in equation (28) equal to
c, + e

temperature at any point in the tube;
mixing cup temperature;

ambient temperature;

temperature of wall ;

dimensionless temperature at any
point in the tube ;

dimensionless temperature at center
line of tube;

dimensionless mixing-cup tempera-
ture;

dimensionless mixing-cup tempera-
ture evaluated at tube exit ;
dimensionless temperature at grid
coordinate (j, k);

absolute ambient temperature;

fluid velocity in the flow direction;
fluid velocity in the flow direction at
tube entrance ;

dimensionless velocity in the flow
direction ;

v, fluid velocity in the radial direction;

v, dimensionless velocity in the radial
direction

Vi ko dimensionless velocity in the radial
direction at grid coordinate (j, k);

w, constant in equation (27) equal to
¢+ e

Yo(x),  Bessel function of the second kind of
order zero;

z, flow direction coordinate ;

A dimensionless flow direction coordi-
nate.

Greek letters

o, thermal diffusivity;

v, kinematic fluid viscosity;

o fluid density;

¢, general term, representing U or T

when introducing form of finite
difference equations in equations

(35-(37).

INTRODUCTION
THE HANDLING of spent nuclear reactor fuel
assemblies, which are often various tubular con-
figurations and which generate heat by fission
product decay, give rise to problems similar to
the one considered here. Much of the previously
published work has been concerned with either
the effects of free convection on already developed
laminar forced convection for confined flows
[1, 2] or purely free convection for unconfined
flow situations such as at a single vertical plate
and around vertical and horizontal cylinders.
Notable exceptions to the former are the investi-
gations of Elenbaas [3] and Bodoia and Osterle
[4] Elenbaas carried out rather extensive
analytical and experimental work on natural
convective flow in such cross sectional geo-
metries as the equilateral triangle, square, rect-
angle, circle and infinite parallel plates. The
work of Bodoia and Osterle points up the need
for additional investigation, especially for pre-
developed flow. Their finite difference calcula-
tions on the development of free convective
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flow between heated vertical plates show that
the development height is rather significant and
that for most situations the assumption of
fully developed flow is not valid. The present
investigations extends the work of Bodoia and
Osterle to natural convection in a vertical tube
open at both ends with constant wall tempera-
ture. In addition the condition of constant wall
heat flux was investigated.

Calculations were made for the velocity and
temperature distributions throughout the tube
assuming the fluid to enter at ambient tempera-
ture and with a flat velocity profile. The velocity
and temperature distributions were obtained by
solving the thermal boundary-layer equations
in dimensionless form by a finite difference
technique.

EQUATIONS DESCRIBING THE PROBLEM

Applying the usual boundary layer assump-
tion [5] to the governing differential equations
(continuity, momentum and energy) yields the
following incompressible, two-dimensional,
thermal boundary layer equations:

v Ov Odu
;+'a“;+'é;=0, (1)
ou ou u  10u 1dp
Var "a?“(gﬁﬂa)‘;a—g’ @
and

b, a (B
Yo Ttz TN\ T e 3)

To make the above equations more amenable
to solution for natural convective flow the body
force in equation (2) can be expressed in terms of
a bouyancy force. Also, density is assumed to
vary only in the gravity force term and viscous
dissipation is assumed negligible in the energy
equation.

A pressure defect is defined as

PP=p—po C)]

where p, is the pressure that would result if the
temperature were the same as ambient through-

891
out the flow field. Thus, one can write
dpo
vo _ 5
i Pod ®)

which, when combined with equations (2) and
(4) and assuming ideal gas behavior gives for the
momentum equation

o (Fu Lai

Y T T\ Trar
1dp"  glt — 1)
_ldp L dt—t) o
0 dz T, 6

where T, is the absolute ambient temperature.
Equations (1), (3) and (6) represent a con-
siderable simplification of the original governing
differential equations, yet still can not be solved
analytically for pre-developed flow. For this
reason a numerical solution was planned.

Constant wall temperature
To facilitate the numerical solution equations
(1), (3) and (6) are written in dimensionless forms,

by making the following substitutions:

V=—

r r ™

where

Gr* — glt, — to)rs

Tolv? ®

The resulting dimensionless equations are
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continuity :
Vv oV U

momentuin :

ou oU o*U 1oU dP
V — _——= + T

iR " Viz=meTrar “azt T (0
and energy:

oT oT o*T 10T
Var Uz = Pr<aR2 +Eﬁ>‘ (11)

If an initial velocity (ie. the velocity at
Z = 0) is termed u, (constant, independent of R)
then the volumetric flow rate can be written
as

[ =nriu, = Tanu dr. (12)
0o

When the dimensionless variables in equations

(7) are substituted into equation (12), the

following dimensionless equation for the volu-

metric flow rate results:

f

= v Gr*

1

= ZjURdR.

[

(13)

In a similar way the heat absorbed by the fluid
rising in the tube can be written in dimensionless
form as

1

0= 4 = 2f UTRdR. (14)

npClv Gr¥(t, — t,)

0
The boundary conditions for equations (9)11)
can be written as
forZ=0and0<R<1:
U=F, V=0, T=0;
forR=0andZ >0

ou oT
3R =0 V=0, R 0; (15
forR=1and Z > 0:

S v

forZ =0and Z = L:

The limiting case of fully developed flow,
which occurs when uniform temperature is
achieved, provides an analytical check on the
finite difference solution to be obtained. Noting
that for developed flow, the dimensionless
temperature T = 1, 0U/8Z = 0, and V = 0, the
momentum equation reduces to

?*U 13U

ket rRar= !

(16)

which when solved for U, yields

1 -R?

U= 4

(17

the characteristic parabolic velocity profile for
isothermal Poiseuille flow. Hence, the limiting
value of the dimensionless volumetric flow
rate is

1
_ p2
Fzzjl 4R RdR =1 (18)

0

Since T = 1, Q is similarly determined to be .

Constant wall heat flux

For this condition it is necessary to redefine
several of the dimensionless variables as follows:
Let

(t —to)k
" @A
5
Gr* = g—-—‘%‘?v);’kr‘” (19)
and
gk 2z
Q= npC,lv Gr¥(g/A), 1, T PrGrel

The expressions for V, U, Z, R, P and F remain
the same. The d1mens1onle$ equations resulting
from substituting equations (19) and (7) into
equations (1),(3) and (6) are identical to equations
(9)-(11). The accompanying boundary con-
ditions are
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forZ=0and0 <R < 1:
U=F, V=0 T=0;
forR=0and Z > 0:
0U/OR =0, V=0, 0T/0R = 0; (20)
forR=1and Z > 0O:
U=0, V=0, 0T/0R =1,
forZ=0and Z = L: P=0

For flow to be hydrodynamically and ther-
mally developed, it is required that the velocity
profile be invariant in the flow direction and that
T vary linearly with Z. Under these conditions
the momentum equation becomes

dP
— — 2 —
T= -V*U +dZ’ (21)
where
02 11
2 I
V'=3r TR

Turning now to the energy equation, which can
be written as

0 aT oT
and integrating from the centerline to the wall
dTr 2
Z-FPr (23)
Thus, equation (22) becomes
10 oT 2U
iaTz(R?ﬁ):?' (24)

Substituting equation (21) into equation (24)
gives

VAU + AU =0
where A = 2/F.

The solution to this equation can be repre-
sented by four Bessel functions as [2]

U = cJo(A*R /i) + bY,(A*R /i)
+ el o(A*R /i) + mK(A*R /).

(25)

(26)

Since the velocity is finite at R = 0,
b=0and m=0.

The functions Jo(4*R./i) and I4(A*R /)
are complex numbers, where Jy(4AR \/1) is the
complex conjugate of I(AR \/ i). Thus, one can
write

U = (c, + ic) Jo(A*R /i) + (e, + ie)
x Io(A*R Ji).  (27)

The real and imaginary parts of the above two
functions have been tabulated as the “ber” and
“bei” functions [6], which allows equation (27)

to be written as
U = sber (A*R) + w bei (A*R) (28)

where s = (¢, + ¢)and w = (¢c; — ¢y
The constants s and w can be evaluated by
using the conditions

U=0 atR=1

and

F =2 |URdR

Sty

After considerable manipulation it was found
that

~ A~ bei (4%) )
% = ber' (4%) ber (4F) + bei’ (4%) bei (A7)
and
ber (4%)
YT T e (47 0

Having the expression for velocity, equation
(22) can be solved for T to give

T — T, = A*[s bei (A*R) — w ber (4*R) + w].
@31

The evaluation of T cannot be carried any
further since there is no a priori knowledge of
T, However, for purposes of comparing these
results with those obtained from the numerical
method this is sufficient, since T, is available
there.
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FINITE DIFFERENCE APPROXIMATION TO

THE NATURAL CONVECTION EQUATIONS

The finite difference analysis of the dimension-
less partial differential equations is begun by
imposing a rectangular grid over the region to
be investigated. The independent variables are
then defined at the intersection of the grid lines,
where (j, k) is a typical mesh point. Mesh points
are numbered consecutively from an arbitrary
origin with the j progressing in the flow (2)
direction and the k in the radial (R) direction.
The dependent variables are designated as point
functions by unique subscript pairs (j, k). Hence,
the quantity U(Z, R) is replaced by U; \.

For the partial derivatives appearing in the
continuity equation, let

oV _ V‘+1,k+1 - Vj+1_k

D J

éR ~ AR (32
and
U Ujsyass + Ujiie = Ujua s —Uji
0z 20z (33)

The symmetrical form used in equation (33)
gives a smaller truncation error than unsym-
metrical forms ([7] Substituting the above
approximations into equation (9) yields:

@ + Vie rar1 — Vieik
R, AR
N Uit 16t Ujr i aa i Ujprr — U

2AZ

k0. (34)

For the momentum and energy equations the
following finite difference approximations are
used:

% _ ¢j+ 1,k+1 ¢j+1,k-1
5

0R 2AR (33)
0 div1x— Pk
0Z~ Az (36)
and
62_4’ _ ¢j+ 1,k+1 — 2¢j+ 1.k + ¢j+ 1,k—=1, (37)
ORZ (AR)? ’

where ¢ represents either U or T.

Substituting the above approximations into
equations (10) and (11) yields:
AkUj+ 1,k=1 + BkUj+ 1.k + CkUj+ 1,k+1

+ (Pj+1)/AZ = Dk + Tj+1.k (38)

and
ZkT}+1,k-—1 + Bk7}+1,k + ‘Ck’I}+1,k+1 = Dk.
(39)

respectively. (See Nomenclature for Ay, By, Cx.
D, and 4,, B;, C,, D)

Eliminating the ¥V, , ,’s from equation (34)
by means of successive substitutions, one has

V; 1
D, R4 3z oo -

k=1

Uj'o

23 Wia— U] =0 (40)

where n represents the number of increments
taken across the half tube (only half the tube
need be considered since there is symmetry
about the Z-axis) Equation (39) written for

ji=0and k=0,1,...,n — 1 becomes n equa-

tions with n unknowns which can be solved for
Tiv1,00--+» Tiv1,p-1- Knowing T, ,, equa-
tions (38) and (40) which represent n + 1
equations with n + 1 unknowns, can now be
solved for U, o, Ujs1,1.---» Ujsq -y and
P;,,. At this point equation (34) is used to de-
termine the values of V., ., Having the
velocity and temperature profiles at Z = 1-AZ
one is in a position to repeat the calculations
for the next level in the tube and so on up the
tube until the dimensionless pressure returns
to zero. At this point Z = L and from the defini-
tion of Z this establishes Gr*(= 1/L).

Knowing the values of U;, and T, permits
the numerical integration of equations (13)
and (14) to determine F and Q at each level of
the tube.

RESULTS

The finite difference equations were solved for
the velocity and temperature profiles at various
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FiG. 1. Velocity and temperature profiles for Q0 = 0-00955.
Constant wall temperature.

Ot 02
0005 Q0!

Z=

a 0-0000!
b 0-00009
¢ 0-0004I
d 0-00065
e 0-00080

FI1G. 2. Velocity and temperature profiles for 0 = 0:0096.
Constant wall heat flux.
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FiG. 3. Velocity and temperature profiles for @ = 012,
Constant wall temperature.

/
!
!

Fi1G. 4. Velocity and temperature profiles for Q = 0-193.
Constant heat wall flux.
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F1G. 5. Pressure defect and heat absorbed for Q = 0-00955.
Constant wall temperature.

stages of the flow development Representative
profiles are presented in Figs. 1-4. Figures 1
and 2 show the side developing temperature and
velocity profiles associated with large diameter
and high wall temperatures for constant wall
temperature and constant wall heat flux, respec-
tively. The curves in Figs. 3 and 4 indicate the
centerline development resulting from relatively
long, small diameter tubes for the two cases
investigated.

Figures 5 and 6 show representative dimen-
sionless heat flux and pressure levels as a
function of axial position for constant wall
temperature and constant wall heat flux, respec-

tively. In either case, the point at which the
pressure defect returns to zero defines the
dimensionless tube length which in turn estab-
lishes the modified Grashof number. As one
would expect the term Q increased at a decreas-
ing rate for the constant wall temperature case
and is linear for the constant wall heat flux case.
For the majority of the calculations, for both
constant wall temperature and constant wall
heat flux, the Prandtl number was set equal
to 0'7. In the case of constant wall temperature
the range of F investigated was 0-0095-0'1238.
For constant wall heat flux the range of F was
0-010-0-289.
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-Px10°

WOLXH

Zx10*

FiG. 6. Pressure defect and heat absorbed for Q = 0:0096.
Constant wall heat flux.

The calculations were carried out on a high
speed digital computer using a Jordan elimina-
tion scheme to solve for temperatures and
velocities. Both the trapezoid and Simpson’s
rules were used to perform the numerical
integrations for F and Q with no significant
differences in results.

Constant wall temperature

The variation of F and Q' with L is shown in
Fig 7. Also shown is the variation of dimension-
less mixing-cup temperature (7,,) with L. Here
it is seen that for F equal to 90 per cent of the
fully developed value () that L is approximately
equal to 0:25 or Gr* is equal to 4. For infinite

parallel plates the corresponding L is 1 [4]
Hence, it is seen that in the case of the tube, the
development length is less than that for parallel
plates by about a factor of four when the radius
of the tube is equal to half of the plate spacing.

The work was compared with the analytical
and experimental work of Elenbaas [3] Elen-
baas presented his results as a plot of Nu, , vs.
Gr*, Pr. The heat transfer coefficient was evalua-
ted using the initial temperature difference.
In terms of the dimensionless variables used
here Nu, = (Q'Gr* Pr)/2.

Figure 8 shows the comparison of the experi-
mental work of Elenbaas with the present work.
It is of interest to note that for large values of
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Limiting valye ————
012 for F and @ Pz
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4 /]
o-oJ» c) / 08
> il //'/
v
5 00§ LA LHEAS 06 &
. A 7 8
W A ~/
lid Gl
0-0 » y oy 04
// / / 0
002 D - 02
LA 1
‘/ L] ‘!'/
04 03 0t 0 |
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FiG. 7. Variation of dimensionless flow, heat absorbed and
mixing cup temperature with dimensionless tube length.
Constant wall temperature Pr = 0-7.
o' I
T
Py
Stope =1/4_ LA=0
-+ 11U
10° AT L
Pl
A\
3 }/
10! Wi
[ Slope = | © Experimental data of Elenbaas
Ly —Finite difference sofution
|~}
o LU L L L
10! 10° 10! 102 10 104

Gr¥*pr

FiG. 8. Comparison of Nu, vs. Gr* Pr with the data of
Elenbaas [3] Constant wall temperature.

Gr* Pr, the slope of the curve approaches the can be represented by the equation
5 X .

1 power law of heated vertical plates. This would e * D
correspond to a large diameter tube where there Nu, = 061 (Gr* Pry%,
is side development as opposed to center line which compares rather well with the 0-60 Gr* Pr
development. The dotted line (A) on the graph reported by Elenbaas.
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For low values of Gr* Pr the equation describ-
ing Nu, is that for fully developed flow, ‘Nu, =
+5 Gr* Pr, and is represented by line B on the
graph.

Elenbaas obtained an approximate solution
to the constant wall temperature problem by
assuming that the radial velocity component v
was zero. His analytical solution is

Nu, ,, = 76 Gr%Pr

ool st

The maximum deviation between his analytical
results and the finite difference solution pre-
sented here was 13 per cent, and occurs at
values of Gr* Pr of 10-100, where flow is neither
approaching full development nor side develop-
ment. It is in this range that neglect of v should
be most serious.

Constant wall heat flux

The variation of F and Q' with L is shown in
Fig 9. As was expected, Q' varies linearly with
L and can be represented by Q' = 2L/Pr.

LEONARD P. DAVIS and JOSEPH J. PERONA

For this case there was no upper limiting value of
F as was found for the condition of constant wall
temperature since the driving force is sustained.
UsingdU/0Z = Oasacriterionfor hydrodynami-
cally developed flow it was found that for F
approaching § the flow became developed before
leaving the tube. Table 1 shows the comparison

Table 1. Comparison of analytical and numerical solution
Jor velocity and temperatures—-constant wall wall heat flux

F = 01353

R U* Ut T-T T-T4f
0 025378 025578 000000  0-00000
01 025177 025309 000940 001224
02 024567 024567 003731 004029
03 023643 023618 007733 008544
04 022020 022095 014526 014672
05 020005 020061 022256 022253
06 017120 017460 032241 031072
07 014180 014226 041294 (40841
08 010273 010287 051847 051205
09 005566 005570 062597 061731

+ Analytical.
1 Numerical

between the velocity profiles for F = 01353
as obtained from the numerical solution and the
analytical solution presented in the Theory.

=5
@'
1L !
L
1o AL
W
- ,f'/
° A
N L
3 A
162 4
y A
e
pd
/i
’/
163
0 ¢ 0> 102 10! | 10

F1G. 9. Variation of dimensionless flow and heat absorbed
with dimensionless tube length. Constant wall heat flux
Pr =07.
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The agreement is quite good. The companson
of T — T, from the two methods is also pre-
sented ; however, the agreement is not as good as
for the velocity profiles.

Instead of plotting Nu vs. Gr*
for constant wall temperature it was desired
to compare the present work with that of Kays

[8] on laminar forced convection. Toward this

nnnnnnn ~Ano

D.. a3
I'T ad wad auviliv

901

that the two curves for natural convection have
different asymptotic values for large values of
the abscissa with the curve for the larger value
of F being nearly identical with that obtained for

farcad sanvactinn Thic ie a reaunlt Af tha affact
IULWAAL VULIVWVLLIVIL L1010 QG 1Woull U1 Wi viIvwL

the heat transfer has on the velocity profiles.
Small values of F (high heating rates and large
radius) favor side development resulting in

o2 \
YKoys
20 \
14
5 \
2 2 |
10 —f
LL‘ !
s ' ”‘\ F=0-01
F=0-2 =
6 Also forced — \4 : ‘
convection .
. el | T
T 16° 162 0"
z/Re Pr D

FiG. 10. Comparison of local Nusselt number with work of
Kays [8] Constant wall heat flux.

end the local Nusselt number based on diameter
was plotted vs. z/Re PrD, or in terms of the
dimensionless variables used in this investiga-
tion, vs. Z/4F Pr. This comparison is shown in
Fig. 4 for two extreme cases of F (0-01 and 0-2).
In addition to the curve due to Kays which
shows marked disagreement for small values
of the abscissa there is presented the results
of calculations in which the temperature de-
pendence was omitted in the equation of motion
(i.e. forced convection). This is also in disagree-
ment with Kays’ results and can be attributed to
Kays’ neglecting the transverse velocity compo-
nent in his calculations. It is of interest to note

larger deviation from laminar forced convection
profiles.
CONCLUSIONS

From the results of this investigation one can
conclude that the development height for free
convective flow in a heated open vertical tube
is quitelargeand consequently causes the assump-
tion of fully developed flow to be invalid for
many situations involving constant wall tem-
perature heat transfer. Fully developed flow is
approached for very small values of the modified
Grashof numbers.

The asymptotic behavior seen for constant
wall temperature is not observed for constant
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wall heat flux because of the maintenance of the
buoyancy driving force. The results indicate
that for values of the dimensionless flow in
excess of § that fully developed flow exists—
asituation that was only approached for constant
wall temperature.

The inclusion of the transverse velocity
component in the calculations for the develop-
ing velocity and temperature profiles has a
significant influence on the Nusselt number
correlations for both heating conditions.
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DEVELOPPEMENT DE L'ECOULEMENT A CONVECTION LIBRE D'UN GAZ DANS UN TUBE
CHAUFFE VERTICAL OUVERT

Résumé—Le systeéme se compose d'un tube vertical ouvert aux deux extrémités dont on chauffe la paroi.
Un gaz ambiant (Pr = 0'7) péneétre par le fond du tube a des vitesses et températures uniformes et s'éléve a

travers le tube par convection libre.

On suppose 1’écoulement a la fois stable et laminaire. Dans ce cas. les équations de la couche limite
thermique incompressible sont résolues par une méthode aux différences finies. pour les conditions de

température et de flux thermique constants a la paroi.

A partir des courbes de vitesse et température obtenues pour des différentes étapes du développement de
I'’écoulement on a trouvé des relations graphiques sans dimension entre la longueur du tube et deux
quantités représentatives du débit volumique et du taux de dissipation thermique. Dans le cas d’une
température constante & la paroi, on compare ces résultats a ceux de Elenbaas et on obtient un excellent
accord. Quant aux résultats A flux pariétal thermique constant on les compare a ceux de Kays su: la
convection forcée laminaire. Ses calculs dans lesquels la composante transversale de la vitesse est supposée
négligeable donnent des nombres de Nusselt & I'entrée supérieurs de 20 a 30 pour cent aux résultats présents.

ENTWICKLUNG EINER FREIEN KONVEKTIONSSTROMUNG VON GAS IN
EINEM SENKRECHTEN, OFFENEN, BEHEIZTEN ROHR

Zusammenfassung—Das System besteht aus einem senkrechten beidseitig offenen Rohr, dessen Wand
beheizt ist. Ein umgebendes Gas (Pr = 0-7) tritt am unteren Ende mit gleichmaissiger Geschwindigkeit
ein und strémt durch das Rohr auf Grund der freien Konvektion. Die Strémung wird als stationdr und
laminar angenommen. Die hier giiltigen Gleichungen der thermischen Grenzschicht wurden mit Hilfe der
Differenzenmethode bei konstanter Wandtemperatur und konstantem Wirmestrom gelGst.

Aus den bei verschiedenen Stromungen erhaltenen Geschwindigkeits- und Temperaturprofilen wurde
eine grafische Korrelation entwickelt zwischen dimensionsloser Rohrlinge und zwei dimensionslosen
Werten, dieden Massenstrom und die Wirmedissipation charakterisieren. Fiir konstante Wandtemperatur
wurden die Ergebnisse mit jenen von Elenbaas (3) verglichen, wobei sich sehr gute Ubereinstimmung
zeigte. Die Ergebnisse firr konstanten Wirmefluss wurden mit jenen von Kays (8) fir laminare Zwangs-
konvektion verglichen. Seine Berechnungen, in denen die umgekehrte Geschwindigkeitskomponente
vernachlissigt wurde, ergab Nusseltzahlen nahe dem Einlauf, die 20 bis 30 Prozent héher liegen als die

hier erhaltenen Werte.
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FREE CONVECTION FLOW OF A GAS

PA3BUTUE CBOBOJHON KOHBEKUUW NPU TEYLEHUU IIOTOKA 'ABA
B OTKPBITON BEPTUKAJBHON TPYBE

AsHoTanmua~—ClicTeMa COCTONT M3 BePTHRAJbHOI TpYyOb, OTKPHTOH ¢ o00eux KOHUOB.
Oxrpymawupi ras (Pr = 0.7) nocTynaer B HIDKHIOK YaCTh TPYOR ¢ HOCTOAHHHOIN CROPOCTHIO
H TEYeT 10 Helf BBEPX BCIEACTBIE ecTecTBeHHON kouBernun, Cunraercd, UT0 MOTOK ABIAETCA
U YCTOHYMBEIM J1 JIAMMHADHHM. YDaBHEHHS JJifl HECHKIIMAEMOro TeIIOBOTO NOTPAHHYHOTO
CJIOA IUIA 3TOTO ciaydas OBUIM peIieHBl METONOM KOHEYHBIX PasznocTell Npll yCHOBHAX TOCTO-
AHHOM TeMNEePATYPLL CTEHKH M IIOCTOAHHOIO TCISIOBOTO IOTORA.

Ha ocHoBanum nmpodmieil CKOPOCTH TeMIICPATYDH, NOJYYeHHBIX JJIA PasjMYHBIX CTajHit
PasBUTHA TOTOKA, YCTAHOBJIEHO rpadirieckoe cOOTHOWIEHME MexAy 0Oe3pasmepHON JitHON
TpYOR M [ByMA GespasMepHBIMI BENHYIIAMN, NPEICTABANOIIUMME OOBEMHYI0 CHOPOCTH
NOTOKA ¥ CKOPOCTS paccesiuia tenaa. [[A cayyas HOCTOAIHON TeMIePATYPH 9TH Pe3YIbTaThH
CPaBHMBAINICH ¢ peryabraramu Jaenbaca (3), npirieM JaHmble COTIAACYITCS OTIMYHO.
PesyabTaTel UCCTEOBAHIA NOCTOSAHHOTO TEMJOBOTO IOTOKA CTEHKI CPABHMBAINCH C
pesyapraraMu HKeiica (8) mo navirHapuoili BHHYENeHHOH wouBernuu, Ero pacuers, npu
KOTOPHIX MIONEPeUHOil cocTaBlimomelt npemnebperany, gamn uicaa Hycceasra BOIM3N BXOJA,

KoTopsie Geutit Ha 20-30 9, nuiine, wem HpPeHCTABJICHIIbIE PE3YABTATH .
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