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Abstract-The system is a vertical tube open at both ends and heated at the wail. An ambient gas (Pr = 0.7) 
enters the bottom of the tube with uniform velocity and temperature and flows up through the tube due to 
natural convection The flow is assumed to be both stable and laminar. The incompressible thermal 
boundary layer equations for this situation were solved by a finite difference method for conditions of 
constant wall temperature and constant wall heat flux. 

From the velocity and temperature profiles obtained for various stages of the flow development, a 
graphical correlation was found between dimensioniess tube length and two dimensionless quantities 
representative of the volumetric flow rate and the rate of heat dissipation For the case of constant wall 
temperature these results were compared with those of Elenbaas 131, and excellent agreement was obtained. 
The results for constant wall heat flux were compared with those of Kays [8] on la&mu forced convection. 
His calculations, in which the transverse velocity component was assumed negligibie,‘gave Nusselt numbers 

near the entrance that are 20-30 per cent higher than the present results. 
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NOMENCLATURE 

parameter in equation (25) equal to 
2jF; 

-4, 
vjk 1 1 --.-L.--- 

2AR2 (AR)’ + !%&R; 

Ah, vjk 1 1 

- ( - Pr(AR)’ + 2AR 2PrR;AR; 

b, constant in equation (26); 

Bk9 LFj,k 2 
AZ+@+; 

Bk, %+ 2 PrQuq2 ; 
ber (x), real part of I& Ji) = real part of 

4(x Ji) ; 
bei (x), imagina~ part of 1,(x Ji) = 

-imaginary part of fO(x Ji); 
ber’ (x), d ber (x)/dx ; 
bei’ (x), d bei (x),dx ; 

c, constant in equation (26); 
Ci, imaginary part of c ; 
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real part of c ; 
heat capacity of fluid ; 

5 1 1 ----a 
2AR (AR)’ 2R,AR ’ 
jc ‘1 ‘. 1 

&- Pr(AR)2 - 2PrR,AR’ 

tube diameter ; 

(uf,k + pj)/m; 
.r 

3.2 Tj,k; 
AZ 
constant in equation (26); 
imaginary part of e ; 
real part of e; 
volumetric flow rate; 
dimensionless volumetric flow rate; 
body force in momentum equation 

(gravity) ; 
modified Grashof number defined by 
equations (8) and (19); 
modified Bessel function of the first 
kind of order zero ; 
Bessel function of the first kind of 
order zero ; 
thermal conductivity of fluid ; 
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modified Bessel function ofthe second 
kind of order zero ; 
tube length ; 
dimensionless tube length = l/Gr*; 
constant in equation (26); 
counting variable ; 
Nusselt number; 
pressure ; 
hydrostatic pressure of fluid at 
ambient conditions ; 
pressure defect as defined by equation 
(4); 
dimensionless pressure defect ; 
Prandtl number ; 
heat dissipation rate ; 
heat flux at the wall ; 
dimensionless heat dissipation rate ; 
dimensionless heat dissipation rate 
evaluated at tube exit ; 
radial coordinate ; 
radius of tube; 
dimensionless radial coordinate; 
dimensionless radial finite difference 
grid coordinate; 
constant in equation (28) equal to 
c, + e,; 
temperature at any point in the tube; 
mixing cup temperature ; 
ambient temperature; 
temperature of wall ; 
dimensionless temperature at any 
point in the tube ; 
dimensionless temperature at center 
line of tube ; 
dimensionless mixing-cup tempera- 
ture ; 
dimensionless mixing-cup tempera- 
ture evaluated at tube exit ; 
dimensionless temperature at grid 
coordinate tj, k) ; 
absolute ambient temperature ; 
fluid velocity in the flow direction ; 
fluid velocity in the flow direction at 
tube entrance ; 
dimensionless velocity in the flow 
direction ; 

u, fluid velocity in the radial direction; 
K dimensionless velocity in the radial 

direction 

vj,k- dimensionless velocity in the radial 
direction at grid coordinate tj, k) ; 

W, constant in equation (27) equal to 
cj + ei; 

W)> Bessel function of the second kind of 
order zero ; 

2. 
flow direction coordinate ; 
dimensionless flow direction coordi- 
nate. 

Greek letters 

a, thermal diffusivity ; 
V, kinematic fluid viscosity; 

P> fluid density ; 

44 general term representing U or T 
when introducing form of finite 
difference equations in equations 
(35H37). 

INTRODUCTION 
THE HANDLING of spent nuclear reactor fuel 
assemblies, which are often various tubular con- 
figurations and which generate heat by fission 
product decay, give rise to problems similar to 
the one considered here. Much of the previously 
published work has been concerned with either 
the effects of free convection on already developed 
laminar forced convection for confined flows 
[l, 21 or purely free convection for unconfined 
flow situations such as at a single vertical plate 
and around vertical and horizontal cylinders. 
Notable exceptions to the former are the investi- 
gations of Elenbaas [3] and Bodoia and Osterle 
[4]. Elenbaas carried out rather extensive 
analytical and experimental work on natural 
convective flow in such cross sectional geo- 
metries as the equilateral triangle, square, rect- 
angle, circle and infinite parallel plates. The 
work of Bodoia and Osterle points up the need 
for additional investigation, especially for pre- 
developed flow. Their finite difference calcula- 
tions on the development of free convective 
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flow between heated vertical plates show that out the flow field. Thus, one can write 

the development height is rather significant and 
that for most situations the assumption of 

dpo 

891 

fully developed flow is not valid. The present 
x = -PoS 

investigations extends the work of Bodoia and which when combined with equations (2) and 
Osterle to natural convection in a vertical tube (4) and assuming ideal gas behavior gives for the 
open at both ends with constant wall tempera- momentum equation 
ture. In addition the condition of constant wall 
heat flux was investigated. 

Calculations were made for the velocity and 
temperature distributions throughout the tube 1 dp’ 
assuming the fluid to enter at ambient tempera- P dz 

+ s(t - to) 
(6) 

ture and with a flat velocity profile. The velocity 
T, 

and temperature distributions were obtained by 
solving the thermal boundary-layer equations 

where ‘ii0 is the absolute ambient temperature. 

in dimensionless form by a linite difference 
Equations (1) (3) and (6) represent a con- 

technique. 
siderable simplification of the original governing 
differential equations, yet still can not be solved 

EQUATIONS DESCRIBING THE PROBLEM 
analytically for pre-developed flow. For this 

Applying the usual boundary layer assump- 
reason a numerical solution was planned. 

tion [S] to the governing differential equations 
(continuity, momentum and energy) yields the 

Constant wall temperature 

following incompressible, two-dimensional, 
To facilitate the numerical solution equations 

thermal boundary layer equations : 
(l), (3) and (6) are written in dimensionless forms, 

by making the following substitutions : 

(1) 

and 
Z=Z 

1 Gr* 

R=r- 
(7) 

To make the above equations more amenable r, 

to solution for natural convective flow the body ! 
force in equation (2) can be expressed in terms of p = p’r”m 
a bouyancy force. Also, density is assumed to p12vz Gr*’ 

vary only in the gravity force term and viscous t - to 
dissipation is assumed negligible in the energy T=p 

equation. 
t1 - to ! 

A pressure defect is defined as where 

P’ = P - PO (4) Gr* = dtl - to>t 
Tolv2 . 

(8) 
where p. is the pressure that would result if the 
temperature were the same as ambient through- The resulting dimensionless equations are 
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continuity : 

f+g+g=o (9) 

momentum : 

and energy : 

If an initial velocity (i.e. the velocity at 
Z = 0) is termed u. (constant, independent of R) 
then the volumetric flow rate can be written 
as 

f = nr;uo = 'f 27rrudr. 
0 

(12) 

When the dimensionless variables in equations 
(7) are substituted into equation 
following dimensionless equation for 
metric flow rate results : 

f l F=-----= 
z/v Gr* 

2 URdR. 
s 
0 

(i2), the 
the volu- 

(13) 

In a similar way the heat absorbed by the fluid 
rising in the tube can be written in dimensionless 
form as 

1 

Q= 
4 

zpC,lv Gr*(t, - to) 
= 2 UTR dR. (14) 

s 

The boundary conditions for zquations (9Hll) 
can be written as 

forZ= OandO 6 R -c 1: 

U=F, V=O, T=O; 

forR = OandZ 2 0: 

au -=o, T/=0, g=o; (15) 
8R 

forR= landZ>O: 

U=O, l/=0. T=l 

forZ=OandZ=L: P = 0. 

The limiting caSe of fully developed flow, 
which occurs when uniform temperature is 
achieved provides an analytical check on the 
finite difference solution to be obtained. Noting 
that for developed flow, the dimensionless 
temperature T = 1, aU/aZ = 0, and V = 0, the 
momentum equation reduces to 

(16) 

which when solved for U, yields 

1 - R2 
cJ4 (17) 

the characteristic parabolic velocity profile for 
isothermal Poiseuille flow. Hence, the limiting 
value of the dimensionless volumetric flow 
rate is 

1 

RdR=$. (18) 

Since T = 1, Q is similarly determined to be &. 

Constant wall heat flux 
For this condition it is necessary to redefine 

several of the dimensionless variables as follows: 
Let 

T = (t - to& 

(q/A),r, 

(19) 

Q= qk 
2 z 

~pC&v Gr*fqiA), r, = PrGr*I’ 

The expressions for K U, Z, R, P and F remain 
the same. The dimensionless equations resulting 
from substituting equations (19) and (7) into 
equations (1) (3) and (6) are identical to equations 
(9)-(11). The accompanying boundary con- 
ditions are 



FREE CONVECTION FLOW OF A GAS 893 

for Z = 0 and 0 < R < 1: 

U=F, V=O, T=O; 

forR = OandZ > 0: 

aU/aR = 0, V = 0, BT/aR = 0; (20) 

forR= landZ>O: 

u = 0, v= 0, aTjaR = 1; 

forZ=OandZ= L: P = 0. 

For flow to be hydrodynamically and ther- 
mally developed, it is required that the velocity 
profile be invariant in the flow direction and that 
T vary linearly with Z. Under these conditions 
the momentum equation becomes 

T= -V2U +z 
dZ’ (21) 

where 

a2 ii 
v2=m+ER. 

Turning now to the energy equation, which can 
be written as 

(22) 

and integrating from the centerline to the wall 

dT 2 -_=- 
dZ F Pr’ (23) 

Thus, equation (22) becomes 

(24) 

Substituting equation (21) into equation (24) 
gives 

V4U + AU = 0 (29 

where A = 2/F. 
The solution to this equation can be repre- 

sented by four Bessel functions as [2] 

U = cJ,(A*R ,/i) + bY,(A*R Ji) 

+ eZ,(A*R Ji) + mK,(A*R ,/i). (26) 

Since the velocity is finite at R = 0, 

b = 0 and m = 0. 

The functions J,(A*R,/i) and Zo(A*R,/i) 
are complex numbers, where J,(AR,/i) is the 
complex conjugate of Z,(AR ,/i). Thus, one can 
write 

U = (c, + ici) JJA*R Ji) + (e, + iei) 

x Z,(A*R ,/i). (27) 

The real and imaginary parts of the above two 
functions have been tabulated as the “ber” and 
“bei” functions [6], which allows equation (27) 
to be written as 

U = s ber (A*R) + w bei (A*R) (28) 

where s = (c, + e,) and w = (Ci - et). 

The constants s and w can be evaluated by 
using the conditions 

U=O atR=l 

and 

F=2frURdR. 
0 

After considerable manipulation it was found 
that 

A-* bei (Af) 

’ = ber’ (A*) ber (A*) + bei’ (A*) bei (A*) 
(29) 

and 

ber (A*) 
w= -sbei(Al)’ 

Having the expression for velocity, equation 
(22) can be solved for T to give 

T - T,, = A3[s bei (A’R) - w ber (A*R) + w]. 

(31) 

The evaluation of T cannot be carried any 
further since there is no a priori knowledge of 
T,,. However, for purposes of comparing these 
results with those obtained from the numerical 
method this is sufficient, since T,, is available 
there. 
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FINITE DIFFERENCE APPROXIMATION TO Substituting the above approximations into 
THE NATURAL CONVECTION EQUATIONS equations (10) and (11) yields : 

The finite difference analysis of the dimension- 
less partial differential equations is begun by AkUj+ l,k- 1 + BkUj+ 1.k + ckuj+ l,k+ 1 

imposing a rectangular grid over the region to + fpj+l)/m = Dk + q+ I,k (38) 

be investigated. The independent variables are and 

then defined at the intersection of the grid lines, 
where (j, k) is a typical mesh point. Mesh points 

AkTj+ ,,k- 1 + BkTj+ ,,k + ckq+ ,.k+, = Dk. 

are numbered consecutively from an arbitrary (39) 

origin with the j progressing in the flow (Z) respectively. (See Nomenclature for 4k. Bkr ck. 
direction and the k in the radial (R) direction. 
The dependent variables are designated as point 

D, and A,, B,, ckk, &.) 

functions by unique subscript pairs (j, k). Hence, 
Eliminating the y+ I,k’s from equation (34) 

the quantity U(Z, R) is replaced by Uj,k. 
by means of successive substitutions one has 

For the partial derivatives appearing in the 
continuity equation, let 

av Q+,,k+l - y+l.k -_= 
aR AR 

k =l 

(32) 
+ 2 f fUjt1.k 

k= I 
- uj,k)] = 0 (40) 

and 

au uj+ I,k+ 1 + Uj+ 1.k - Uj,k+ 1 - Uj,k where n represents the number of increments 
-_= 

az 2AZ 
(33) 

taken across the half tube (only half the tube 
need be considered since there is symmetry 

The symmetrical form used in equation (33) about the Z-axis) Equation (39) written for 

gives a smaller truncation error than unsym- j = 0 and k = 0, 1, , n - 1 becomes n equa- 

metrical forms [7]. Substituting the above tions with n unknowns which can be solved for 

approximations into equation (9) yields : T. 
J+l.o?“‘? Ti+1,.-I. 

Knowing q + I, k, equa- 

vj,k y+l,k+l - F+-l,k 

tions (38) and (40) which represent n + 1 

R+ 

equations with n + 1 unknowns, can now be 
k AR solved for Uj+l,o> Uj+l,l,..., Uj+l,n-l, and 

+ 
uj+ I,k + Uj+l.k+lUj,k+l - Uj.k 

Pj+ 1. At this point equation (34) is used to de- 

2AZ 
= 0. (34) termine the Va1t.B of &+ l,k+ 1. Having the 

For the momentum and energy equations the 
velocity and temperature profiles at Z = 1. AZ 

following finite difference approximations are 
one is in a position to repeat the calculations 
for the next level in the tube and so on up the 

used : tube until the dimensionless pressure returns 

a4 4j+l,k+l - 4j+l,k-I 
to zero. At this point Z = L and from the defini- 

-= 
aR 2AR ’ 

(3% tion of Z this establishes Gr*(= l/L). 
Knowing the values of Uj.k and q,k permits 

ad) +j+ 1.k - bj,k 
-= 

az AZ ’ 
(36) 

the numerical integration of equations (13) 
and (14) to determine F and Q at each level of 

and the tube. 

a24 
~- 

aR2 - 
($j+ I.k+ 1 - 24j+ 1.k + 4j+ l,k-I. t37) 

tARI 
RESULTS 

The finite difference equations were solved for 
where C#I represents either U or 7: the velocity and temperature profiles at various 
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FIG. 1. Velocity and temperature profiles for Q = @00955. 
Constant wall temperature. 
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FIG. 2. Velocity and temperature profiles for Q = 00096. 
Constant wall heat flux. 
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FIG. 3. Velocity and temperature profiles for Q = 0.12. 
Constant wall temperature. 
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FIG. 4. Velocity and temperature profiles for Q = a193 
Constant heat wall flux. 
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FIG. 5. Pressure defed and heat absorbed for Q = @00955. 
Constant wall temperature. 

stages of the flow development Representative 
profiles are presented in Figs. l-4. Figures 1 
and 2 show the side developing temperature and 
velocity profiles associated with large diameter 
and high wall temperatures for constant wall 
temperature and constant wall heat flux, respec- 
tively. The curves in Figs. 3 and 4 indicate the 
centerline development resulting from relatively 
long, small diameter tubes for the two cases 
investigated. 

Figures 5 and 6 show representative dimen- 
sionless heat flux and pressure levels as a 
function of axial position for constant wall 
temperature and constant wall heat flux, respec- 

tively. In either case, the point at which the 
pressure defect returns to zero defines the 
dimensionless tube length which in turn estab- 
lishes the modified Grashof number. As one 
would expect the term Q increased at a decreas- 
ing rate for the constant wall temperature case 
and is linear for the constant wall heat flux case. 
For the majority of the calculations, for both 
constant wall temperature and constant wall 
heat flux, the Prandtl number was set equal 
to 0.7. In the case of constant wall temperature 
the range of F investigated was 0~00950~1238. 
For constant wall heat flux the range of F was 
OOlMl289. 
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FIG. 6. Pressure defect and heat absorbed for Q = OGO96 
Constant wall heat flux. 

The calculations were carried out on a high 
speed digital computer using a Jordan elimina- 
tion scheme to solve for temperatures and 
velocities. Both the trapezoid and Simpson’s 
rules were used to perform the numerical 
integrations for F and Q with no significant 
differences in results. 

Constant wall temperature 
The variation of F and Q’ with L is shown in 

Fig 7. Also shown is the variation of dimension- 
less mixing-cup temperature (Tk) with L Here 
it is seen that for F equal to 90 per cent of the 
fully developed value 8) that L is approximately 
equal to 0.25 or Gr* is equal to 4. For infinite 

parallel plates the corresponding L is 1 [4]. 
Hence, it is seen that in the case of the tube, the 
development length is less than that for parallel 
plates by about a factor of four when the radius 
of the tube is equal to half of the plate spacing. 

The work was compared with the analytical 
and experimental work of Elenbaas [3]. Elen- 
baas presented his results as a plot of Nu,., vs. 
Gr*, Pr. The heat transfer coefficient was evalua- 
ted using the initial temperature difference. 
In terms of the dimensionless variables used 
here Nu, = (Q’Gr* Pr)/2. 

Figure 8 shows the comparison of the experi- 
mental work of Elenbaas with the present work 
It is of interest to note that for large values of 
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006 
t- 

0.6 -5 

FIG. 7. Variation of dimensionless flow, heat absorbed and 
mixing cup temperature with dimensionles tube length. 

Constant wall temperature Pr = 0.7. 

1111111 I I I llllll I I1111111 I I illlul 
IO’ IO2 Id 104 

Gr *Pr 

FIG. 8. Comparison of Nu, vs. Gr* Pr with the data of 
Elenbaas [3]. Constant wall temperature. 

Gr*Pr, the slope of the curve approaches the can be represented by the equation 
a power law of heated vertical plates. This would 
correspond to a large diameter tube where there 

Nu, = 0.61 (Gr* I+)*, 

is side development as opposed to center line which compares rather well with the 0.60 Gr* Pr 
development The dotted line (A) on the graph reported by Elenbaas. 
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For low values of Gr* Pr the equation describ- 
ing Nu, is that for fully developed flow, Wu, = 
7; Gr* Pr, and is represented by line B on the 

graph. 
Elenbaas obtained an approximate solution 

to the constant wall temperature problem by 
assuming that the radial velocity component u 
was zero. His analytical solution is 

Nn,, w = & Gr*,Pr 

The maximum deviation between his analytical 
results and the finite difference solution pre- 
sented here was 13 per cent, and occurs at 
values of Gr* Pr of lCrlO0, where flow is neither 
approaching full development nor side develop- 
ment. It is in this range that neglect of u should 
be most serious. 

Constant wall heat flux 
i- Analytical. 
$ Numerical. 

The variation of F and Q’ with L is shown in between the velocity profiles for F = 0.1353 
Fig 9. As was expected Q’ varies linearly with as obtained from the numerical solution and the 
L and can be represented by Q’ = 2L/Pr. analytical solution presented in the Theory. 

For this case there was no upper limiting value of 
F as was found for the condition of constant wall 
temperature since the driving force is sustained. 
Using 8 U/a2 = 0 as a criterion for hydrodynami- 
cally developed flow it was found that for F 
approaching & the flow became developed before 
leaving the tube. Table 1 shows the comparison 

Table 1. Comparison of unalytical and numerical solution 
for velocity and temperatures--constant wall wall heat jlux 

F = 0.1353 

R u* Uf T-C T - T,,1- 

0 0.25378 O-25578 0,OOOOO OQOOOO 
0.1 0.25 177 0.25309 000940 0.01224 
@2 024567 0.24567 0.0373 1 0.04029 
0.3 @23643 0.23618 0.07733 0.08544 
o-4 @22020 0.22095 0.14526 0.14672 
0.5 0.20005 020061 0.22256 0.22253 
0.6 017120 0.17460 0.32241 0.31072 
0.7 0.14189 014226 0.41294 0 40841 
0.8 0.10273 0.10287 051847 O-51205 
o-9 O-05566 005570 0.62597 0.61731 

-3 In 

FIG. 9. Variation of dimensionless flow and heat absorbed 
with dimensionless tube length. Constant wall heat flux 

Pr = 0.7. 



FREE CONVECTION FLOW OF A GAS 901 

The agreement is quite good The comparison 
of T - T,, from the two methods is also pre- 
sented; however, the agreement is not as good as 
for the velocity profiles. 

Instead of plotting Nu vs Gr* Pr as was done 
for constant wall temperature it was desired 
to compare the present work with that of Kays 
[S] on laminar forced convection. Toward this 

that the two curves for natural convection have 
different asymptotic values for large values of 
the abscissa with the curve for the larger value 
of F being nearly identical with that obtained for 
forced convection This is a result of the effect 
the heat transfer has on the velocity profiles. 
Small values of F (high heating rates and large 
radius) favor side development resulting in 

22 

20 

18 

16 

14 
; 

B 12 

IO 

8 

6 

d 

z/Re Pf D 

FIG. la Comparison of local Nusselt number with work of 
Kays [S]. Constant wall heat flux. 

end the local Nusselt number based on diameter 
was plotted vs z/Re Pr D, or in terms of the 
dimensionless variables used in this investiga- 
tion, vs. Zj4F Pr. This comparison is shown in 
Fig. 4 for two extreme cases of F (001 and O-2). 
In addition to the curve due to Kays which 
shows marked disagreement for small values 
of the abscissa there is presented the results 
of calculations in which the temperature de- 
pendence was omit&l in the equation of motion 
(i.e. forced convection), This is also in disagree- 
ment with Kays’ results and can be attributed to 
Kays’ neglecting the transverse velocity compo- 
nent in his calculations. It is of interest to note 

larger deviation from laminar forced convection 
profiles. 

CONCLUSIONS 

From the results of this investigation one can 
conclude that the development height for free 
convective flow in a heated open vertical tube 
is quite large and consequently causes the assump- 
tion of fully developed flow to be invalid for 
many situations involving constant wall tem- 
perature heat transfer. Fully developed flow is 
approached for very small values of the modified 
Grashof numbers. 

The asymptotic behavior seen for constant 
wall temperature is not observed for constant 

C 
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wall heat flux because of the maintenance of the 2. 

buoyancy driving force. The results indicate 

that for values of the dimensionless flow in 3, 

excess of $ that fully developed flow exists--- 

a situation that was only approached for constant 

wall temperature. 

4. 

The inclusion of the transverse velocity 

component in the calculations for the develop- 5. 

ing velocity and temperature profiles has a 6, 

significant influence on the Nusselt number 

correlations for both heating conditions. 7. 
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Dl%‘ELOPPEMENT DE L’ECOULEMENT A CONVECTlON LIBRE DUN GAZ DANS UN TUBE 
CHAUFFE VERTICAL OUVERT 

R&u&-Le systeme se compose d’un tube vertical ouvert aux deux extremites dont on chauffe la paroi. 
Un gaz ambiant (Pr = 07) penttre par le fond du tube a des vitesses et temperatures uniformes et s’tltve a 
travers le tube par convection libre. 

On suppose l’tcoulement a la fois stable et laminaire. Dans ce cas. les equations de la couchc limitc 
thermique incompressible sont resolues par une methode aux differences Iinies. pour les conditions de 
temperature et de flux thermique constants a la paroi. 

A partir des courbes de vitesse et temperature obtenues pour des differentes ttapes du developpement de 
I’ecoulement on a trouvb des relations graphiques sans dimension entre la longueur du tube et deux 
quantites representatives du debit volumique et du taux de dissipation thermique. Dans le cas d’une 
temperature constante a la paroi, on compare ces r&hats a ceux de Elenbaas et on obtient un excellent 
accord. Quant aux resultats a flux parietal thermique constant on les compare a ceux de Kays su la 
convection for&e laminaire. Ses calculs dans lesquels la composante transversale de la vitesse est supposee 
negligeable donnent des nombres de Nusselt a I’entree suptrieurs de 20 a 30 pour cent aux resultats presents. 

ENTWICKLUNG EINER FREIEN KONVEKTIONSSTROMUNG VON GAS IN 
EINEM SENKRECHTEN, OFFENEN, BEHEIZTEN ROHR 

Zuaammenf~-Das System besteht aus einem senkrechten beidseitig offenen Rohr, dessen Wand 
beheizt ist. Em umgebendes Gas (Pr = 0.7) tritt am unteren Ende mit gleichmlssiger Geschwindigkeit 
em und striimt durch das Rohr auf Grund der freien Konvektion. DK Strijmung wird als station% und 
laminar angenommen. Die hier giiltigen Gleichungen der thermischen Grenzschicht wurden mit Hilfe der 
Differenzenmethode bei konstanter Wandtemperatur und konstantem WHrmestrom gel&t. 

Aus den bei verschiedenen Stromungen erhaltenen Geschwindigkeits- und Temperaturprofilen wurde 
eine grafische Korrelation entwickeh zwischen dimensionsloser Rohrhtnge und zwei dimensionslosen 
WertendiedenMassenstrom und die Wiirmedissipation charakterisieren. Fiir konstante Wandtemperatur 
wurden die Ergebnisse mit jenen von Elenbaas (3) verghchen, wobei sich sehr gute Ubereinstimmung 
zeigte. Die Ergebnisse fiir konstanten Warmefluss wurden mit jenen von Kays (8) fiir laminate Zwangs- 
konvektion verglichen. Seine Berechnungen. in denen die umgekehrte Geschwindigkeitskomponente 
vemachllssigt wurde. ergab Nussehzahlen nahe dem Einlauf, die 20 bis 30 Prozent hiiher hegen als die 

hier erhaltenen Werte. 
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PXBBM’I’ME CBOBO~HOfi KOHBEKLJkIMM IIPM TE~ildHI/IM IIOTOKA I’MA 
B OTHPbITO@ HEPTMKAJIbHO6! TPYEE 

AEHoTa~H~-CiIcTe~a COCTOIIT 113 BepT~liia~bHO~i Tpyi%I, OTHPbITO~ C 06eIIX K0H4OB. 
o~py~a~q~~ra3(~~ = ~.?)~OCTy~aeTB II~~~H~~ ~Ia~CbTpy6~ C ~OCTO~HrrHO~C~OpOCTb~ 
If Te9eT II0 Hf&BBepx BCne~CTBire eCTeCTBeHHO& liOfiBCIiLfllIl.~9IITaeTCH,9TO IIOTOK RBJIRBTCR 
)i yC~0tiWfBbI~ EI naniwIapHbrnl. YpaBHewR Anrr HecwIn~aetiroro TeIWIOBOrO n0rpafWJHOr0 
CJIOH HJIH 3TOrO CJIyqaR 6bIJIH PeUleHbI MeTOHON IiOHe,YHbIx pa3HOCTeli IIpII yCJIOBWIX IIOCTO- 
RHHOi TeMBepaTypbI CTeHHEI $1 IIOCTORHHOrO TCIljIOBOrO IIOTOK3. 

Ha OCHOBaHIIll npoi@neti CKO~OCTU TenllrepaTypbI, IIony~eBHbrx RJIR pa3nHusbIx CTanlIil 

pa3BrrTBn noTot;a, ycfraBoBze~i0 rpa@wiecKoe t00THoIUeHsIe aIe=fiy henpaan~epao~ RJiI%HOti 
Tpy6bI 51 ,qBymcr 6e:?pa3~epH~~;~l Be~l~~~iIi3~II1, ~Pe~CT~B~B~~~~I~I 06~e~Hy~ CKOPOCTb 

~OTO~a~~~OpOCTbpacceB~~I~BTe~~a.~~~~C~y~~~ ~O~TO~BHO~TeM~e~aTy~bI3T~¶pe3y~bTaTbl 
CpaBw~BaniIcb c pe:jynbTaTanw %iertGaca (3), ripwrenf AaBsbre CorxacyroTcn OT~M~HO. 
Pe3yJIbTaTbI MCCJie~OBaH&;H ITOCTORHHOrO TenjIoBoro no+oKa CTeIIliII cpaBHW3anHCb C 

pe3yJIbTaTaMH HeiiCa (8) II0 JIa\lIIHapIIOfi BbtHy?H~efiHOti KOHBeKIWII. Ero paWeTb1, IIplI 
HOTOpbIX rronepewoti cocTaBnfu0weif npelre6peranl1, HasIr wcJIa HyCCeJIbTa BGnaaIr BxoHa. 

KoTopbIe 6bIJIlI fra 20-3070 IlblIIIe, ‘feni npeHcTaBneriIrbIe pe3ynbTaTbr. 


